, including all inherited members.
adapt_adapt() | PhoneModel | |
adapt_adaptVar() | PhoneModel | |
adapt_addAcumulatorData(int state, int contextKey, Vector *observation, double probability=1.0) | PhoneModel | |
adapt_clear() | PhoneModel | |
adapt_setAcTrain(int useLabel=-1, int useSegmentation=-1, FeaturePool *usePool=NULL) | TrainPhoneModel | |
adapt_setAcumulators(int useLabel, int useSegmentation, FeaturePool *usePool) | PhoneModel | |
adapt_setHelperMatrices() | PhoneModel | |
adapt_setInitialNode(Adapt_AM_TreeNode *node) | PhoneModel | |
adapt_setNode() | PhoneModel | |
adapt_setVarTrans() | PhoneModel | |
adapt_unAdapt() | PhoneModel | |
addAccumulators(FILE *file) | PhoneModel | |
addChain(TokenType **tokenNew, float likelihood, TokenType *token, int stateNr, int curTime, DecoderSettings *settings, float *bestL, bool checkCollission) | PhoneModel | [static] |
addChain_lmla(TokenType **tokenNew, float likelihood, TokenType *token, int index, DecoderSettings *settings, float *bestL) | PhoneModel | [protected, static] |
addChain_ordered(TokenType **tokenNew, float likelihood, TokenType *token, int stateNr, int curTime, DecoderSettings *settings, float *bestL) | PhoneModel | [static] |
addCountedGaussians(TrainPhoneModel *source, int nmbr) | TrainPhoneModel | |
addGaussian(Vector *v) | TrainPhoneModel | |
appendSAT(FILE *outFile) | TrainPhoneModel | |
baumWelch(int trainWhat, PhoneModel *doSat=NULL) | TrainPhoneModel | [protected] |
channelInfoBlock | TrainPhoneModel | [protected] |
copyGaussians(MixGaussian *destMixGaussian, int maxNmbr) | PhoneModel | |
copyPhonePath(PLRType *pP) | PhoneModel | [static] |
count(Vector *observation) | TrainPhoneModel | |
decision_Matrix | TrainPhoneModel | [protected] |
decision_numberOfModels | TrainPhoneModel | [protected] |
decision_numberOfRules | TrainPhoneModel | [protected] |
dim() const | PhoneModel | [inline] |
dimensions | PhoneModel | [protected] |
doNotuseBordersForTraining(bool useBordersNot) | TrainPhoneModel | |
fillDistanceArray(int *distA) | TrainPhoneModel | |
finishSAT() | TrainPhoneModel | |
getClusterP(Vector *observation) | TrainPhoneModel | |
getCoSim(TrainPhoneModel *t1, TrainPhoneModel *t2) | TrainPhoneModel | |
getDominantGaussian() | TrainPhoneModel | |
getKLDistance(TrainPhoneModel *t2) | TrainPhoneModel | |
getLogPDFProbability(int contextKey, Vector *v) | PhoneModel | |
getLookaheadLogP(double *vectorList, int timeStamp, bool doSecondHalf) | PhoneModel | [virtual] |
getNormDistance() | TrainPhoneModel | |
getNumberOfGaussians() | PhoneModel | |
getOutput(int contextKey, TokenType **token, int tLength, TokenType **outToken, DecoderSettings *settings, float *bestL) | PhoneModel | [virtual] |
getPDFProbability(int contextKey, Vector *v, int stateNr, int time) | PhoneModel | |
getSilP(int useLabel, int useSegmentation, FeaturePool *usePool) | TrainPhoneModel | [protected] |
getSilSumHist(Vector **histogram) | PhoneModel | |
getStateNr(int contextKey, int state) | PhoneModel | |
getStatistics(void) | PhoneModel | |
getTrainSilP(int useLabel=-1, int useSegmentation=-1, FeaturePool *usePool=NULL) | TrainPhoneModel | |
getTransition(int contextKey, bool toSelf, int stateNr) | PhoneModel | |
guestTrainingLabel | TrainPhoneModel | [protected] |
initialisePhonePath(PLRType *t) | PhoneModel | [static] |
initialiseToken(TokenType **token) | PhoneModel | [static] |
isSil | PhoneModel | [protected] |
isSilModel() const | PhoneModel | [inline] |
mapAdaptMeans() | PhoneModel | |
maxNrOfGaussians() | TrainPhoneModel | |
mixtureSetData | PhoneModel | |
moveModelGaussians(TrainPhoneModel *model, double factor) | TrainPhoneModel | |
normalize() | TrainPhoneModel | |
PhoneModel(int dim=ASR_DEFAULT_VECTORSIZE) | PhoneModel | |
PhoneModel(FILE *inFile, int dim=ASR_DEFAULT_VECTORSIZE, bool onlyUseFastP=false) | PhoneModel | |
PhoneModel(MixGaussian *mix, double toNext) | PhoneModel | |
printInfo(Vector *v) | PhoneModel | |
printModel(FILE *fileMean, FILE *fileVariance, FILE *fileWeight) | PhoneModel | |
processVector(int contextKey, Vector *v, int t, int index, TokenType **token, int tLength, TokenType *inToken, DecoderSettings *settings, float *bestL) | PhoneModel | [virtual] |
readModel(FILE *inFile) | TrainPhoneModel | |
replaceTokenLM(TokenType *nt, TokenType *token, float like, float *bestL) | PhoneModel | [protected, static] |
resetPhoneAdmin() | PhoneModel | |
setDecisionMatrix(int numberOfModels, int numberOfRules, int *dMatrix) | TrainPhoneModel | |
setMaxGaussians(int maxGaussians) | TrainPhoneModel | |
setSilTrans(double tr) | PhoneModel | |
setTrainingData(FeaturePool *fp, int segmentationID, int labelID, int guestID=-1, int tSilP=100, int tSilMax=-1) | TrainPhoneModel | |
silRinglastPos | PhoneModel | [protected] |
startCount() | TrainPhoneModel | |
stateMix_1 | PhoneModel | [protected] |
stateMix_2 | PhoneModel | [protected] |
stateMix_3 | PhoneModel | [protected] |
statistics | PhoneModel | [protected] |
stopCount() | TrainPhoneModel | |
timeStamp | PhoneModel | [protected] |
totalLength | TrainPhoneModel | [protected] |
touchPDF(int contextKey, int t, MixGaussian **updateThese, double **resultHere) | PhoneModel | [virtual] |
train(int maxGaussians, bool isSil, bool neverPrune=false, Vector **trainDiscr=NULL, Vector *trainDiscrMask=NULL, PhoneModel *doSAT=NULL, bool doFastTraining=false) | TrainPhoneModel | |
trainingLabel | TrainPhoneModel | [protected] |
trainingPool | TrainPhoneModel | [protected] |
trainingSegment | TrainPhoneModel | [protected] |
trainMMI(FILE *fileEnum, FILE *fileDenom) | TrainPhoneModel | |
TrainPhoneModel(const char *n, int contextLeft, int contextRight, bool isSil, int dim, FeaturePoolInfo *infoBlock=NULL) | TrainPhoneModel | |
TrainPhoneModel(MixGaussian *gmm, double trans, const char *name) | TrainPhoneModel | |
TrainPhoneModel(TrainPhoneModel *model1, TrainPhoneModel *model2, int maxGaussians=-1) | TrainPhoneModel | |
TrainPhoneModel(TrainPhoneModel *model1, TrainPhoneModel *model2, double rate) | TrainPhoneModel | |
TrainPhoneModel(TrainPhoneModel *orgModel, int shiftLeftRight=0) | TrainPhoneModel | |
TrainPhoneModel(FILE *inFile, int dim, FeaturePoolInfo *infoBlock=NULL) | TrainPhoneModel | |
trainSilMax | TrainPhoneModel | [protected] |
trainSilP | TrainPhoneModel | [protected] |
trainWithoutBorders | TrainPhoneModel | [protected] |
viterbi(int trainWhat) | TrainPhoneModel | [protected] |
weightRinglastPos | PhoneModel | [protected] |
writeAccumulators(FILE *file, FILE *fileF=NULL, FILE *fileST=NULL, bool doBinary=false) | PhoneModel | |
writeModel(FILE *outFile) | PhoneModel | |
writeSAT(FILE *outFile) | TrainPhoneModel | |
~PhoneModel() | PhoneModel | |
~TrainPhoneModel() | TrainPhoneModel | |