// sgmmbin/sgmm-latgen-simple.cc // Copyright 2009-2011 Saarland University; Microsoft Corporation // 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include using std::string; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm/am-sgmm.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/lattice-simple-decoder.h" #include "sgmm/decodable-am-sgmm.h" #include "util/timer.h" namespace kaldi { // the reference arguments at the beginning are not const as the style guide // requires, but are best viewed as inputs. bool ProcessUtterance(LatticeSimpleDecoder &decoder, const AmSgmm &am_sgmm, const TransitionModel &trans_model, const SgmmGselectConfig &sgmm_opts, double log_prune, double acoustic_scale, const Matrix &features, RandomAccessInt32VectorVectorReader &gselect_reader, RandomAccessBaseFloatVectorReaderMapped &spkvecs_reader, const fst::SymbolTable *word_syms, const std::string &utt, bool determinize, bool allow_partial, Int32VectorWriter *alignments_writer, Int32VectorWriter *words_writer, CompactLatticeWriter *compact_lattice_writer, LatticeWriter *lattice_writer, double *like_ptr) { // puts utterance's like in like_ptr on success. using fst::VectorFst; SgmmPerSpkDerivedVars spk_vars; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.v_s = spkvecs_reader.Value(utt); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt << ", not decoding this utterance"; return false; // We could use zero, but probably the user would want to know about this // (this would normally be a script error or some kind of failure). } } bool has_gselect = false; if (gselect_reader.IsOpen()) { has_gselect = gselect_reader.HasKey(utt) && gselect_reader.Value(utt).size() == features.NumRows(); if (!has_gselect) KALDI_WARN << "No Gaussian-selection info available for utterance " << utt << " (or wrong size)"; } std::vector > empty_gselect; const std::vector > *gselect = (has_gselect ? &gselect_reader.Value(utt) : &empty_gselect); DecodableAmSgmmScaled sgmm_decodable(sgmm_opts, am_sgmm, spk_vars, trans_model, features, *gselect, log_prune, acoustic_scale); return DecodeUtteranceLatticeSimple( decoder, sgmm_decodable, trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, alignments_writer, words_writer, compact_lattice_writer, lattice_writer, like_ptr); } } // end namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Decode features using SGMM-based model.\n" "Usage: sgmm-latgen-simple [options] " " [ [] ]\n"; ParseOptions po(usage); BaseFloat acoustic_scale = 0.1; bool allow_partial = false; BaseFloat log_prune = 5.0; string word_syms_filename, gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier; LatticeSimpleDecoderConfig decoder_opts; SgmmGselectConfig sgmm_opts; decoder_opts.Register(&po); sgmm_opts.Register(&po); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("log-prune", &log_prune, "Pruning beam used to reduce number of exp() evaluations."); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Register("gselect", &gselect_rspecifier, "rspecifier for precomputed per-frame Gaussian indices."); po.Register("spk-vecs", &spkvecs_rspecifier, "rspecifier for speaker vectors"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 6) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_filename = po.GetArg(2), feature_rspecifier = po.GetArg(3), lattice_wspecifier = po.GetArg(4), words_wspecifier = po.GetOptArg(5), alignment_wspecifier = po.GetOptArg(6); TransitionModel trans_model; kaldi::AmSgmm am_sgmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } CompactLatticeWriter compact_lattice_writer; LatticeWriter lattice_writer; bool determinize = decoder_opts.determinize_lattice; if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier) : lattice_writer.Open(lattice_wspecifier))) KALDI_ERR << "Could not open table for writing lattices: " << lattice_wspecifier; Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // It's important that we initialize decode_fst after feature_reader, as it // can prevent crashes on systems installed without enough virtual memory. // It has to do with what happens on UNIX systems if you call fork() on a // large process: the page-table entries are duplicated, which requires a // lot of virtual memory. VectorFst *decode_fst = fst::ReadFstKaldi(fst_in_filename); BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; LatticeSimpleDecoder decoder(*decode_fst, decoder_opts); Timer timer; for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); Matrix features(feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } double like; if (ProcessUtterance(decoder, am_sgmm, trans_model, sgmm_opts, log_prune, acoustic_scale, features, gselect_reader, spkvecs_reader, word_syms, utt, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &like)) { tot_like += like; frame_count += features.NumRows(); KALDI_LOG << "Log-like per frame for utterance " << utt << " is " << (like / features.NumRows()) << " over " << features.NumRows() << " frames."; num_success++; } else num_fail++; } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken [excluding initialization] "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame = " << (tot_like/frame_count) << " over " << frame_count << " frames."; if (word_syms) delete word_syms; delete decode_fst; return (num_success != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }