// sgmmbin/sgmm-decode-faster.cc // Copyright 2009-2012 Saarland University Microsoft Corporation Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include using std::string; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm/am-sgmm.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/faster-decoder.h" #include "sgmm/decodable-am-sgmm.h" #include "util/timer.h" #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Decode features using SGMM-based model.\n" "Usage: sgmm-decode-faster [options] " " [alignments-wspecifier]\n"; ParseOptions po(usage); bool allow_partial = true; BaseFloat acoustic_scale = 0.1; BaseFloat log_prune = 5.0; string word_syms_filename, gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier; FasterDecoderOptions decoder_opts; decoder_opts.Register(&po, true); // true == include obscure settings. kaldi::SgmmGselectConfig sgmm_opts; sgmm_opts.Register(&po); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("log-prune", &log_prune, "Pruning beam used to reduce number of exp() evaluations."); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("gselect", &gselect_rspecifier, "rspecifier for precomputed per-frame Gaussian indices."); po.Register("spk-vecs", &spkvecs_rspecifier, "rspecifier for speaker vectors"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 5) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_filename = po.GetArg(2), feature_rspecifier = po.GetArg(3), words_wspecifier = po.GetArg(4), alignment_wspecifier = po.GetOptArg(5); TransitionModel trans_model; kaldi::AmSgmm am_sgmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // It's important that we initialize decode_fst after feature_reader, as it // can prevent crashes on systems installed without enough virtual memory. // It has to do with what happens on UNIX systems if you call fork() on a // large process: the page-table entries are duplicated, which requires a // lot of virtual memory. VectorFst *decode_fst = fst::ReadFstKaldi(fst_in_filename); BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; FasterDecoder decoder(*decode_fst, decoder_opts); Timer timer; const std::vector > empty_gselect; for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); Matrix features(feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } SgmmPerSpkDerivedVars spk_vars; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.v_s = spkvecs_reader.Value(utt); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt; num_fail++; continue; } } // else spk_vars is "empty" bool has_gselect = false; if (gselect_reader.IsOpen()) { has_gselect = gselect_reader.HasKey(utt) && gselect_reader.Value(utt).size() == features.NumRows(); if (!has_gselect) KALDI_WARN << "No Gaussian-selection info available for utterance " << utt << " (or wrong size)"; } const std::vector > *gselect = (has_gselect ? &gselect_reader.Value(utt) : &empty_gselect); DecodableAmSgmmScaled sgmm_decodable(sgmm_opts, am_sgmm, spk_vars, trans_model, features, *gselect, log_prune, acoustic_scale); decoder.Decode(&sgmm_decodable); VectorFst decoded; // linear FST. if ( (allow_partial || decoder.ReachedFinal()) && decoder.GetBestPath(&decoded) ) { if (!decoder.ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, " << "outputting partial traceback since --allow-partial=true"; num_success++; std::vector alignment; std::vector words; LatticeWeight weight; frame_count += features.NumRows(); GetLinearSymbolSequence(decoded, &alignment, &words, &weight); words_writer.Write(utt, words); if (alignment_writer.IsOpen()) alignment_writer.Write(utt, alignment); if (word_syms != NULL) { std::cerr << utt << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] << " not in symbol table."; std::cerr << s << ' '; } std::cerr << '\n'; } BaseFloat like = -weight.Value1() -weight.Value2(); tot_like += like; KALDI_LOG << "Log-like per frame for utterance " << utt << " is " << (like / features.NumRows()) << " over " << features.NumRows() << " frames."; } else { num_fail++; KALDI_WARN << "Did not successfully decode utterance " << utt << ", len = " << features.NumRows(); } } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken [excluding initialization] "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame = " << (tot_like/frame_count) << " over " << frame_count << " frames."; if (word_syms) delete word_syms; delete decode_fst; return (num_success != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }