// sgmm2bin/sgmm2-acc-stats2.cc // Copyright 2009-2012 Saarland University (Author: Arnab Ghoshal), // Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "hmm/transition-model.h" #include "sgmm2/estimate-am-sgmm2.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { using namespace kaldi; try { const char *usage = "Accumulate numerator and denominator stats for discriminative training\n" "of SGMMs (input is posteriors of mixed sign)\n" "Usage: sgmm2-acc-stats2 [options] " " \n" "e.g.: sgmm2-acc-stats2 1.mdl 1.ali scp:train.scp ark:1.posts num.acc den.acc\n"; ParseOptions po(usage); bool binary = true; std::string gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier; std::string update_flags_str = "vMNwucSt"; BaseFloat rand_prune = 1.0e-05; po.Register("binary", &binary, "Write output in binary mode"); po.Register("gselect", &gselect_rspecifier, "Precomputed Gaussian indices (rspecifier)"); po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors (rspecifier)"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Register("rand-prune", &rand_prune, "Pruning threshold for posteriors"); po.Register("update-flags", &update_flags_str, "Which SGMM parameters to accumulate " "stats for: subset of vMNwcS."); po.Read(argc, argv); kaldi::SgmmUpdateFlagsType acc_flags = StringToSgmmUpdateFlags(update_flags_str); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), posteriors_rspecifier = po.GetArg(3), num_accs_wxfilename = po.GetArg(4), den_accs_wxfilename = po.GetArg(5); using namespace kaldi; typedef kaldi::int32 int32; typedef kaldi::int64 int64; // Initialize the readers before the model, as the model can // be large, and we don't want to call fork() after reading it if // virtual memory may be low. SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); RandomAccessTokenReader utt2spk_map(utt2spk_rspecifier); AmSgmm2 am_sgmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } if (acc_flags & kSgmmSpeakerWeightProjections && !am_sgmm.HasSpeakerDependentWeights()) { acc_flags &= ~kSgmmSpeakerWeightProjections; KALDI_WARN << "Removing speaker weight projections (u) from flags " "as not present in model\n"; } if (acc_flags & kSgmmSpeakerProjections && !am_sgmm.HasSpeakerSpace()) { acc_flags &= ~kSgmmSpeakerProjections; KALDI_WARN << "Removing speaker projections (N) from flags " "as not present in model\n"; } Vector num_transition_accs, den_transition_accs; if (acc_flags & kaldi::kSgmmTransitions) { trans_model.InitStats(&num_transition_accs); trans_model.InitStats(&den_transition_accs); } MleAmSgmm2Accs num_sgmm_accs(rand_prune), den_sgmm_accs(rand_prune); bool have_spk_vecs = (spkvecs_rspecifier != ""); num_sgmm_accs.ResizeAccumulators(am_sgmm, acc_flags, have_spk_vecs); den_sgmm_accs.ResizeAccumulators(am_sgmm, acc_flags, have_spk_vecs); double tot_like = 0.0, tot_weight = 0.0, tot_abs_weight = 0.0; int64 tot_frames = 0; kaldi::Sgmm2PerFrameDerivedVars per_frame_vars; int32 num_done = 0, num_err = 0; std::string cur_spk; Sgmm2PerSpkDerivedVars spk_vars; for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); std::string spk = utt; if (!utt2spk_rspecifier.empty()) { if (!utt2spk_map.HasKey(utt)) { KALDI_WARN << "utt2spk map does not have value for " << utt << ", ignoring this utterance."; continue; } else { spk = utt2spk_map.Value(utt); } } if (spk != cur_spk && cur_spk != "") { num_sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); den_sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); } if (spk != cur_spk || spk_vars.Empty()) { spk_vars.Clear(); if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt)); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt; num_err++; continue; } } // else spk_vars is "empty" } cur_spk = spk; const Matrix &features = feature_reader.Value(); if (!posteriors_reader.HasKey(utt) || posteriors_reader.Value(utt).size() != features.NumRows()) { KALDI_WARN << "No posterior info available for utterance " << utt << " (or wrong size)"; num_err++; continue; } const Posterior &posterior = posteriors_reader.Value(utt); if (!gselect_reader.HasKey(utt) && gselect_reader.Value(utt).size() != features.NumRows()) { KALDI_WARN << "No Gaussian-selection info available for utterance " << utt << " (or wrong size)"; num_err++; } const std::vector > &gselect = gselect_reader.Value(utt); num_done++; BaseFloat tot_like_this_file = 0.0, tot_weight_this_file = 0.0, tot_abs_weight_this_file = 0.0; for (size_t i = 0; i < posterior.size(); i++) { if (posterior[i].empty()) continue; am_sgmm.ComputePerFrameVars(features.Row(i), gselect[i], spk_vars, &per_frame_vars); for (size_t j = 0; j < posterior[i].size(); j++) { int32 tid = posterior[i][j].first, // transition identifier. pdf_id = trans_model.TransitionIdToPdf(tid); BaseFloat weight = posterior[i][j].second, abs_weight = std::abs(weight); if (acc_flags & kaldi::kSgmmTransitions) { trans_model.Accumulate(abs_weight, tid, weight > 0 ? &num_transition_accs : &den_transition_accs); } tot_like_this_file += (weight > 0 ? num_sgmm_accs : den_sgmm_accs).Accumulate( am_sgmm, per_frame_vars, pdf_id, abs_weight, &spk_vars) * weight; tot_weight_this_file += weight; tot_abs_weight_this_file += abs_weight; } } // Commit stats for the last speaker. num_sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); den_sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); tot_like += tot_like_this_file; tot_weight += tot_weight_this_file; tot_abs_weight += tot_abs_weight_this_file; tot_frames += posterior.size(); if (num_done % 50 == 0) KALDI_LOG << "Processed " << num_done << " utterances."; } // Commit stats for last speaker. num_sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); den_sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); KALDI_LOG << "Overall weighted acoustic likelihood per frame was " << (tot_like/tot_frames) << " over " << tot_frames << " frames; " << "average weight per frame is " << (tot_weight/tot_frames) << ", average abs(weight) per frame is " << (tot_abs_weight/tot_frames); KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; { Output ko(num_accs_wxfilename, binary); num_transition_accs.Write(ko.Stream(), binary); num_sgmm_accs.Write(ko.Stream(), binary); } { Output ko(den_accs_wxfilename, binary); den_transition_accs.Write(ko.Stream(), binary); den_sgmm_accs.Write(ko.Stream(), binary); } KALDI_LOG << "Written accs."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }