// nnet2bin/nnet-train-simple.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // 2014 Xiaohui Zhang // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-randomize.h" #include "nnet2/train-nnet-ensemble.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Train an ensemble of neural networks with backprop and stochastic\n" "gradient descent using minibatches. The training frames and labels\n" "are read via a pipe from nnet-randomize-frames. This version of the\n" "training program does not update the learning rate, but uses\n" "the learning rates stored in the neural nets.\n" "\n" "Usage: nnet-train-ensemble [options] ... " " ... \n" "\n" "e.g.:\n" "nnet-randomize-frames [args] | nnet-train-ensemble 1.1.nnet 2.1.nnet ark:- 2.1.nnet 2.2.nnet \n"; bool binary_write = true; bool zero_stats = true; int32 srand_seed = 0; std::string use_gpu = "yes"; NnetEnsembleTrainerConfig train_config; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("zero-stats", &zero_stats, "If true, zero occupation " "counts stored with the neural net (only affects mixing up)."); po.Register("srand", &srand_seed, "Seed for random number generator " "(relevant if you have layers of type AffineComponentPreconditioned " "with l2-penalty != 0.0"); po.Register("use-gpu", &use_gpu, "yes|no|optional, only has effect if compiled with CUDA"); train_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() <= 3) { po.PrintUsage(); exit(1); } srand(srand_seed); #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif int32 num_nnets = (po.NumArgs() - 1) / 2; std::string nnet_rxfilename = po.GetArg(1); std::string examples_rspecifier = po.GetArg(num_nnets + 1); std::string nnet1_rxfilename = po.GetArg(1); TransitionModel trans_model; std::vector am_nnets(num_nnets); { bool binary_read; Input ki(nnet1_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); KALDI_LOG << nnet1_rxfilename; am_nnets[0].Read(ki.Stream(), binary_read); } std::vector nnets(num_nnets); nnets[0] = &(am_nnets[0].GetNnet()); for (int32 n = 1; n < num_nnets; n++) { TransitionModel trans_model; bool binary_read; Input ki(po.GetArg(1 + n), &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnets[n].Read(ki.Stream(), binary_read); nnets[n] = &am_nnets[n].GetNnet(); } int64 num_examples = 0; { if (zero_stats) { for (int32 n = 1; n < num_nnets; n++) nnets[n]->ZeroStats(); } { // want to make sure this object deinitializes before // we write the model, as it does something in the destructor. NnetEnsembleTrainer trainer(train_config, nnets); SequentialNnetExampleReader example_reader(examples_rspecifier); for (; !example_reader.Done(); example_reader.Next(), num_examples++) trainer.TrainOnExample(example_reader.Value()); // It all happens here! } { for (int32 n = 0; n < num_nnets; n++) { Output ko(po.GetArg(po.NumArgs() - num_nnets + n + 1), binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnets[n].Write(ko.Stream(), binary_write); } } } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif KALDI_LOG << "Finished training, processed " << num_examples << " training examples."; return (num_examples == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }