// nnet2bin/nnet-to-raw-nnet.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/am-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; const char *usage = "Copy a (cpu-based) neural net: reads the AmNnet with its transition model, but\n" "writes just the Nnet with no transition model (i.e. the raw neural net.)\n" "\n" "Usage: nnet-to-raw-nnet [options] \n" "e.g.:\n" " nnet-to-raw-nnet --binary=false 1.mdl 1.raw\n"; int32 truncate = -1; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("truncate", &truncate, "If set, will truncate the neural net " "to this many components by removing the last components."); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), raw_nnet_wxfilename = po.GetArg(2); TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(nnet_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } if (truncate >= 0) { KALDI_LOG << "Truncating neural net to " << truncate << " layers.\n"; am_nnet.GetNnet().Resize(truncate); } const Nnet &nnet = am_nnet.GetNnet(); WriteKaldiObject(nnet, raw_nnet_wxfilename, binary_write); KALDI_LOG << "Read neural net from " << nnet_rxfilename << " and wrote raw neural net to " << raw_nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }