// nnet2bin/nnet-normalize-stddev.cc // Copyright 2013 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-randomize.h" #include "nnet2/train-nnet.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "This program first identifies any affine or block affine layers that\n" "are followed by pnorm and then renormalize layers. Then it rescales\n" "those layers such that the parameter stddev is 1.0 after scaling.\n" "\n" "Usage: nnet-normalize-stddev [options] \n" " e.g.: nnet-normalize-stddev final.mdl final.mdl\n"; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), normalized_nnet_rxfilename = po.GetArg(2); TransitionModel trans_model; AmNnet am_nnet; { bool binary_read; Input ki(nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); } int32 ret = 0; // Works out the layers that we would like to normalize: any affine or block // affine layers that are followed by pnorm and then renormalize layers. vector identified_components; for (int32 c = 0; c < am_nnet.GetNnet().NumComponents() - 2; c++) { // Checks if the current layer is an affine layer or block affine layer. Component *component = &(am_nnet.GetNnet().GetComponent(c)); AffineComponent *ac = dynamic_cast(component); BlockAffineComponent *bac = dynamic_cast(component); if (ac == NULL && bac == NULL) continue; // Checks if the next layer is a pnorm layer. component = &(am_nnet.GetNnet().GetComponent(c + 1)); PnormComponent *pc = dynamic_cast(component); if (pc == NULL) continue; // Checks if the layer behind the pnorm layer is a normalize layer. component = &(am_nnet.GetNnet().GetComponent(c + 2)); NormalizeComponent *nc = dynamic_cast(component); if (nc == NULL) continue; // This is the layer that we would like to normalize. identified_components.push_back(c); } // Normalizes the identified layers. for (int32 c = 0; c < identified_components.size(); c++) { Component *component = &(am_nnet.GetNnet().GetComponent(identified_components[c])); UpdatableComponent *uc = dynamic_cast(component); KALDI_ASSERT(uc != NULL); Vector params(uc->GetParameterDim()); uc->Vectorize(¶ms); BaseFloat params_average = params.Sum() / static_cast(params.Dim()); params.Add(-1.0 * params_average); BaseFloat params_stddev = sqrt(VecVec(params, params) / static_cast(params.Dim())); if (params_stddev > 0.0) { uc->Scale(1.0 / params_stddev); KALDI_LOG << "Normalizd component " << identified_components[c]; } } // Writes the normalized model. Output ko(normalized_nnet_rxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); return ret; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }