// nnet2bin/nnet-latgen-faster-parallel.cc // Copyright 2009-2013 Microsoft Corporation // Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/lattice-faster-decoder.h" #include "nnet2/decodable-am-nnet.h" #include "util/timer.h" #include "thread/kaldi-task-sequence.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Generate lattices using neural net model.\n" "Usage: nnet-latgen-faster-parallel [options] " " [ [] ]\n"; ParseOptions po(usage); Timer timer; bool allow_partial = false; BaseFloat acoustic_scale = 0.1; LatticeFasterDecoderConfig config; TaskSequencerConfig sequencer_config; // has --num-threads option std::string spkvecs_rspecifier, utt2spk_rspecifier; std::string word_syms_filename; sequencer_config.Register(&po); config.Register(&po); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "If true, produce output even if end state was not reached."); po.Register("spk-vecs", &spkvecs_rspecifier, "Rspecifier for a vector that describes each speaker; " "only needed if the neural net was trained this way."); po.Register("utt2spk", &utt2spk_rspecifier, "Rspecifier for map from utterance to speaker; only relevant " "in conjunction with the --spk-vecs option."); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 6) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_str = po.GetArg(2), feature_rspecifier = po.GetArg(3), lattice_wspecifier = po.GetArg(4), words_wspecifier = po.GetOptArg(5), alignment_wspecifier = po.GetOptArg(6); TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } bool determinize = config.determinize_lattice; CompactLatticeWriter compact_lattice_writer; LatticeWriter lattice_writer; if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier) : lattice_writer.Open(lattice_wspecifier))) KALDI_ERR << "Could not open table for writing lattices: " << lattice_wspecifier; TaskSequencer sequencer(sequencer_config); Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); // We support reading in a vector to describe each speaker, if the neural // net requires this (i.e. it was trained with this). double tot_like = 0.0; kaldi::int64 frame_count = 0; int num_done = 0, num_err = 0; VectorFst *decode_fst = NULL; if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) { SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); decode_fst = fst::ReadFstKaldi(fst_in_str); { for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); const Matrix &features (feature_reader.Value()); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_err++; continue; } Vector spk_info; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_info = spkvecs_reader.Value(utt); } else { KALDI_WARN << "Cannot find speaker vector for " << utt << " (skipping this utterance)."; continue; } } bool pad_input = true; DecodableAmNnetParallel *nnet_decodable = new DecodableAmNnetParallel( trans_model, am_nnet, new CuMatrix(features), new CuVector(spk_info), pad_input, acoustic_scale); LatticeFasterDecoder *decoder = new LatticeFasterDecoder(*decode_fst, config); DecodeUtteranceLatticeFasterClass *task = new DecodeUtteranceLatticeFasterClass( decoder, nnet_decodable, // takes ownership of these two. trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &tot_like, &frame_count, &num_done, &num_err, NULL); sequencer.Run(task); // takes ownership of "task", // and will delete it when done. } } } else { // We have different FSTs for different utterances. SequentialTableReader fst_reader(fst_in_str); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Not decoding utterance " << utt << " because no features available."; num_err++; continue; } const Matrix &features = feature_reader.Value(utt); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_err++; continue; } // This constructor of LatticeFasterDecoder takes ownership of the FST. LatticeFasterDecoder *decoder = new LatticeFasterDecoder(config, fst_reader.Value().Copy()); Vector spk_info; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_info = spkvecs_reader.Value(utt); } else { KALDI_WARN << "Cannot find speaker vector for " << utt << " (skipping this utterance)."; continue; } } bool pad_input = true; DecodableAmNnetParallel *nnet_decodable = new DecodableAmNnetParallel( trans_model, am_nnet, new CuMatrix(features), new CuVector(spk_info), pad_input, acoustic_scale); DecodeUtteranceLatticeFasterClass *task = new DecodeUtteranceLatticeFasterClass( decoder, nnet_decodable, // takes ownership of these two. trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &tot_like, &frame_count, &num_done, &num_err, NULL); sequencer.Run(task); // takes ownership of "task", // and will delete it when done. } } sequencer.Wait(); // Waits for all tasks to be done. if (decode_fst != NULL) delete decode_fst; double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_done << " utterances, failed for " << num_err; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<<" frames."; if (word_syms) delete word_syms; if (num_done != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }