// nnet2bin/nnet-get-preconditioner.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-randomize.h" #include "nnet2/nnet-lbfgs.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Create a neural-net model that can be used as a preconditioner\n" "by programs like nnet-combine (contains a component of type AffineComponentA\n" "corresponding to each descendant of AffineComponent in the original net.)\n" "\n" "Usage: nnet-get-preconditioner [options] \n" "\n" "e.g.:\n" "nnet-get-preconditioner 1.nnet ark:1.egs 1.preconditioner\n"; int32 minibatch_size = 1024; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("minibatch-size", &minibatch_size, "Size of minibatches used in computation"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), examples_rspecifier = po.GetArg(2), preconditioner_wxfilename = po.GetArg(3); TransitionModel trans_model; AmNnet am_nnet; { bool binary_read; Input ki(nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); } Nnet *preconditioner = GetPreconditioner(am_nnet.GetNnet()); AmNnet am_preconditioner(*preconditioner); delete preconditioner; preconditioner = NULL; int64 num_examples = 0; double tot_logprob = 0; std::vector examples; SequentialNnetExampleReader example_reader(examples_rspecifier); for (; !example_reader.Done(); example_reader.Next()) { examples.push_back(example_reader.Value()); num_examples++; if (static_cast(examples.size()) == minibatch_size) { tot_logprob += DoBackprop(am_nnet.GetNnet(), examples, &(am_preconditioner.GetNnet())); examples.clear(); } if (num_examples % 100000 == 0 && num_examples > 0) KALDI_LOG << "Processed " << (num_examples - examples.size()) << " examples, average log-prob per example is " << (tot_logprob / (num_examples - examples.size())); } if (!examples.empty()) tot_logprob += DoBackprop(am_nnet.GetNnet(), examples, &(am_preconditioner.GetNnet())); { // Write the preconditioner. Output ko(preconditioner_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_preconditioner.Write(ko.Stream(), binary_write); } KALDI_LOG << "Overall log-prob per example was " << (tot_logprob / num_examples) << " over " << num_examples << " examples."; KALDI_LOG << "Wrote preconditioner to " << preconditioner_wxfilename; return (num_examples == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }