// nnet2bin/nnet-compute-from-egs.cc // Copyright 2012-2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-randomize.h" #include "nnet2/train-nnet.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Does the neural net computation, taking as input the nnet-training examples\n" "(typically an archive with the extension .egs), ignoring the labels; it\n" "outputs as a matrix the result. Used mostly for debugging.\n" "\n" "Usage: nnet-compute-from-egs [options] " "\n" "e.g.: nnet-compute-from-egs 'nnet-to-raw-nnet final.mdl -|' egs.10.1.ark ark:-\n"; ParseOptions po(usage); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string raw_nnet_rxfilename = po.GetArg(1), examples_rspecifier = po.GetArg(2), features_or_loglikes_wspecifier = po.GetArg(3); Nnet nnet; ReadKaldiObject(raw_nnet_rxfilename, &nnet); int64 num_egs = 0; SequentialNnetExampleReader example_reader(examples_rspecifier); BaseFloatMatrixWriter writer(features_or_loglikes_wspecifier); int32 left_context = nnet.LeftContext(), context = nnet.LeftContext() + 1 + nnet.RightContext(); for (; !example_reader.Done(); example_reader.Next()) { const NnetExample &eg = example_reader.Value(); Matrix input_frames(eg.input_frames); int32 start_dim = eg.left_context - left_context; SubMatrix cpu_input_block(input_frames, start_dim, context, 0, eg.input_frames.NumCols()); CuMatrix input_block(cpu_input_block); CuMatrix output_block(1, nnet.OutputDim()); CuVector spk_info(eg.spk_info); bool pad_input = false; NnetComputation(nnet, input_block, spk_info, pad_input, &output_block); writer.Write("global", Matrix(output_block)); num_egs++; } KALDI_LOG << "Processed " << num_egs << " examples."; return (num_egs == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }