// nnet2bin/nnet-combine-egs-discriminative.cc // Copyright 2012-2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-example-functions.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Copy examples for discriminative neural network training,\n" "and combine successive examples if their combined length will\n" "be less than --max-length. This can help to improve efficiency\n" "(--max-length corresponds to minibatch size)\n" "\n" "Usage: nnet-combine-egs-discriminative [options] \n" "\n" "e.g.\n" "nnet-combine-egs-discriminative --max-length=512 ark:temp.1.degs ark:1.degs\n"; int32 max_length = 512; int32 hard_max_length = 2048; int32 batch_size = 250; ParseOptions po(usage); po.Register("max-length", &max_length, "Maximum length of example that we " "will create when combining"); po.Register("batch-size", &batch_size, "Size of batch used when combinging " "examples"); po.Register("hard-max-length", &hard_max_length, "Length of example beyond " "which we will discard (very long examples may cause out of " "memory errors)"); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } KALDI_ASSERT(hard_max_length >= max_length); KALDI_ASSERT(batch_size >= 1); std::string examples_rspecifier = po.GetArg(1), examples_wspecifier = po.GetArg(2); SequentialDiscriminativeNnetExampleReader example_reader( examples_rspecifier); DiscriminativeNnetExampleWriter example_writer( examples_wspecifier); int64 num_read = 0, num_written = 0, num_discarded = 0; while (!example_reader.Done()) { std::vector buffer; size_t size = batch_size; buffer.reserve(size); for (; !example_reader.Done() && buffer.size() < size; example_reader.Next()) { buffer.push_back(example_reader.Value()); num_read++; } std::vector combined; CombineDiscriminativeExamples(max_length, buffer, &combined); buffer.clear(); for (size_t i = 0; i < combined.size(); i++) { const DiscriminativeNnetExample &eg = combined[i]; int32 num_frames = eg.input_frames.NumRows(); if (num_frames > hard_max_length) { KALDI_WARN << "Discarding segment of length " << num_frames << " because it exceeds --hard-max-length=" << hard_max_length; num_discarded++; } else { std::ostringstream ostr; ostr << (num_written++); example_writer.Write(ostr.str(), eg); } } } KALDI_LOG << "Read " << num_read << " discriminative neural-network training" << " examples, wrote " << num_written << ", discarded " << num_discarded; return (num_written == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }