// nnet2bin/nnet-combine-a.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-randomize.h" #include "nnet2/combine-nnet-a.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "This is a \"special case\" of neural net combination. It takes a previous\n" "iteration's model, and N other models that have been trained in\n" "parallel with SGD on different batches. If there are L updatable components,\n" "it first uses the validation set to train L parameters \\alpha_l, consisting of step-lengths\n" "along the direction (old-model) -> (average of trained models). There is a threshold\n" "\"valid-impr-thresh\" (default 0.5). If the validation-set improvement is more than\n" "this, we skip the next step. The next step is to \"overshoot\" by a specified factor,\n" "e.g. 1.8. (This should be strictly less than 2). Once we have the resulting parameters\n" "\\alpha_l, we multiply the per-layer learning rates by those factors, subject to sanity-preserving\n" "limits on the changes and a minimum learning-rate (see the other options)\n" "\n" "Usage: nnet-combine-a [options] ... \n" "\n" "e.g.:\n" " nnet-combine 1.1.nnet 1.2.nnet 1.3.nnet ark:valid.egs 2.nnet\n"; bool binary_write = true; NnetCombineAconfig combine_config; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); combine_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() < 4) { po.PrintUsage(); exit(1); } std::string nnet1_rxfilename = po.GetArg(1), valid_examples_rspecifier = po.GetArg(po.NumArgs() - 1), nnet_wxfilename = po.GetArg(po.NumArgs()); TransitionModel trans_model; AmNnet am_nnet1; { bool binary_read; Input ki(nnet1_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet1.Read(ki.Stream(), binary_read); } int32 num_nnets = po.NumArgs() - 2; std::vector nnets(num_nnets); nnets[0] = am_nnet1.GetNnet(); am_nnet1.GetNnet() = Nnet(); // Clear it to save memory. for (int32 n = 1; n < num_nnets; n++) { TransitionModel trans_model; AmNnet am_nnet; bool binary_read; Input ki(po.GetArg(1 + n), &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); nnets[n] = am_nnet.GetNnet(); } std::vector validation_set; // stores validation // frames. { // This block adds samples to "validation_set". SequentialNnetExampleReader example_reader( valid_examples_rspecifier); for (; !example_reader.Done(); example_reader.Next()) validation_set.push_back(example_reader.Value()); KALDI_LOG << "Read " << validation_set.size() << " examples from the " << "validation set."; KALDI_ASSERT(validation_set.size() > 0); } CombineNnetsA(combine_config, validation_set, nnets, &(am_nnet1.GetNnet())); { Output ko(nnet_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet1.Write(ko.Stream(), binary_write); } KALDI_LOG << "Finished combining neural nets, wrote model to " << nnet_wxfilename; return (validation_set.size() == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }