// nnet2bin/nnet-am-init.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/am-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; // TODO: specify in the usage message where the example scripts are. const char *usage = "Initialize the neural network acoustic model and its associated\n" "transition-model, from a tree, a topology file, and a neural-net\n" "without an associated acoustic model.\n" "See example scripts to see how this works in practice.\n" "\n" "Usage: nnet-am-init [options] \n" "e.g.:\n" " nnet-am-init tree topo \"nnet-init nnet.config - |\" 1.mdl\n"; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string tree_rxfilename = po.GetArg(1), topo_rxfilename = po.GetArg(2), raw_nnet_rxfilename = po.GetArg(3), nnet_wxfilename = po.GetArg(4); ContextDependency ctx_dep; ReadKaldiObject(tree_rxfilename, &ctx_dep); HmmTopology topo; ReadKaldiObject(topo_rxfilename, &topo); // Construct the transition model from the tree and the topology file. TransitionModel trans_model(ctx_dep, topo); AmNnet am_nnet; { Nnet nnet; bool binary; Input ki(raw_nnet_rxfilename, &binary); nnet.Read(ki.Stream(), binary); am_nnet.Init(nnet); } if (am_nnet.NumPdfs() != trans_model.NumPdfs()) KALDI_ERR << "Mismatch in number of pdfs, neural net has " << am_nnet.NumPdfs() << ", transition model has " << trans_model.NumPdfs(); { Output ko(nnet_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); } KALDI_LOG << "Initialized neural net and wrote it to " << nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }