// nnet2/mixup-nnet.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet2/mixup-nnet.h" #include "gmm/model-common.h" // for GetSplitTargets() #include // for std::accumulate namespace kaldi { namespace nnet2 { /** This function makes sure the neural net ends with a SumGroupComponent. If it doesn't, it adds one (with a single mixture/matrix corresponding to each output element.) [Before doing so, it makes sure that the last layer is a SoftmaxLayer, which is what we expect. You can remove this check if there is some use-case that makes sense where the type of the previous layer is different. */ static void GiveNnetCorrectTopology(Nnet *nnet, AffineComponent **affine_component, SoftmaxComponent **softmax_component, SumGroupComponent **sum_group_component) { int32 nc = nnet->NumComponents(); KALDI_ASSERT(nc > 0); Component* component = &(nnet->GetComponent(nc - 1)); if ((*sum_group_component = dynamic_cast(component)) == NULL) { KALDI_LOG << "Adding SumGroupComponent to neural net."; int32 dim = component->OutputDim(); // Give it the same learning rate as the first updatable layer we have. std::vector sizes(dim, 1); // a vector of all ones, of dimension "dim". *sum_group_component = new SumGroupComponent(); (*sum_group_component)->Init(sizes); nnet->Append(*sum_group_component); nc++; } component = &(nnet->GetComponent(nc - 2)); if ((*softmax_component = dynamic_cast(component)) == NULL) KALDI_ERR << "Neural net has wrong topology: expected second-to-last " << "component to be SoftmaxComponent, type is " << component->Type(); component = &(nnet->GetComponent(nc - 3)); if ((*affine_component = dynamic_cast(component)) == NULL) KALDI_ERR << "Neural net has wrong topology: expected third-to-last " << "component to be AffineComponent, type is " << component->Type(); } /** This function works as follows. We first make sure the neural net has the correct topology, so its last component is a SumGroupComponent. We then get the counts for each matrix in the SumGroupComponent (these will either correspond to leaves in the decision tree, or level-1 leaves, if we have a 2-level-tree system). We work out the total count for each of these matrices, by getting the count from the SoftmaxComponent. We then increase, if necessary, the dimensions that the SumGroupComponent sums over increase the dimension of the SoftmaxComponent if necessary, and duplicate and then perturb the relevant rows of the AffineComponent. */ void MixupNnet(const NnetMixupConfig &mixup_config, Nnet *nnet) { AffineComponent *affine_component = NULL; SoftmaxComponent *softmax_component = NULL; SumGroupComponent *sum_group_component = NULL; GiveNnetCorrectTopology(nnet, &affine_component, &softmax_component, &sum_group_component); // Adds a SumGroupComponent if needed. softmax_component->MixUp(mixup_config.num_mixtures, mixup_config.power, mixup_config.min_count, mixup_config.perturb_stddev, affine_component, sum_group_component); nnet->Check(); // Checks that dimensions all match up. } /// Allocate mixtures to states via a power rule, and add any new mixtures. void SoftmaxComponent::MixUp(int32 num_mixtures, BaseFloat power, BaseFloat min_count, BaseFloat perturb_stddev, AffineComponent *ac, SumGroupComponent *sc) { // "counts" is derived from this->counts_ by summing. std::vector old_sizes; sc->GetSizes(&old_sizes); Vector counts(old_sizes.size()); int32 old_dim = 0; for (size_t i = 0; i < old_sizes.size(); i++) { int32 this_input_dim = old_sizes[i]; BaseFloat this_tot_count = 0.0; /// Total the count out of /// all the output dims of the softmax layer that correspond /// to this mixture. We'll use this total to allocate new quasi-Gaussians. for (int32 d = 0; d < this_input_dim; d++, old_dim++) this_tot_count += this->value_sum_(old_dim); counts(i) = this_tot_count; } KALDI_ASSERT(old_dim == value_sum_.Dim()); KALDI_ASSERT(counts.Sum() > 0 && "Cannot do mixing up without counts."); std::vector targets; // #mixtures for each state. // Get the target number of mixtures for each state. GetSplitTargets(counts, num_mixtures, power, min_count, &targets); KALDI_ASSERT(targets.size() == old_sizes.size()); std::vector new_sizes(old_sizes.size()); for (size_t i = 0; i < targets.size(); i++) new_sizes[i] = std::max(targets[i], old_sizes[i]); int32 new_dim = std::accumulate(new_sizes.begin(), new_sizes.end(), static_cast(0)), affine_input_dim = ac->InputDim(); KALDI_ASSERT(new_dim >= old_dim); sc->Init(new_sizes); // bias and linear terms from affine component: Vector old_bias_term(ac->bias_params_); Matrix old_linear_term(ac->linear_params_); Vector new_bias_term(new_dim); Matrix new_linear_term(new_dim, affine_input_dim); Vector new_counts(new_dim); // old_offset and new_offset are offsets into the dimension at the // input/output of the softmax component, before and after mixing up // respectively. They get incremented in the following loop. int32 old_offset = 0, new_offset = 0; Vector old_counts(this->value_sum_); for (size_t i = 0; i < old_sizes.size(); i++) { int32 this_old_dim = old_sizes[i], this_new_dim = new_sizes[i], this_cur_dim = this_old_dim; // this_cur_dim is loop variable. SubMatrix this_old_linear_term(old_linear_term, old_offset, this_old_dim, 0, affine_input_dim), this_new_linear_term(new_linear_term, new_offset, this_new_dim, 0, affine_input_dim); SubVector this_old_bias_term(old_bias_term, old_offset, this_old_dim), this_new_bias_term(new_bias_term, new_offset, this_new_dim), this_old_counts(old_counts, old_offset, this_old_dim), this_new_counts(new_counts, new_offset, this_new_dim); // Copy the same-dimensional part of the parameters and counts. this_new_linear_term.Range(0, this_old_dim, 0, affine_input_dim). CopyFromMat(this_old_linear_term); this_new_bias_term.Range(0, this_old_dim). CopyFromVec(this_old_bias_term); this_new_counts.Range(0, this_old_dim). CopyFromVec(this_old_counts); // this_new_params is the mixture weights. // Add the new components... for (; this_cur_dim < this_new_dim; this_cur_dim++) { BaseFloat *count_begin = this_new_counts.Data(), *count_end = count_begin + this_cur_dim, *count_max = std::max_element(count_begin, count_end); KALDI_ASSERT(*count_max > 0.0); *count_max *= 0.5; *count_end = *count_max; // count for the element we're adding. int32 max_index = static_cast(count_max - count_begin), new_index = this_cur_dim; SubVector cur_vec(this_new_linear_term, max_index), new_vec(this_new_linear_term, new_index); new_vec.CopyFromVec(cur_vec); Vector rand(affine_input_dim); rand.SetRandn(); cur_vec.AddVec(perturb_stddev, rand); new_vec.AddVec(-perturb_stddev, rand); this_new_bias_term(max_index) += log(0.5); this_new_bias_term(new_index) = this_new_bias_term(max_index); } old_offset += this_old_dim; new_offset += this_new_dim; } KALDI_ASSERT(old_offset == old_dim && new_offset == new_dim); ac->SetParams(new_bias_term, new_linear_term); this->value_sum_.Resize(new_counts.Dim()); this->value_sum_.CopyFromVec(new_counts); this->count_ = this->value_sum_.Sum(); this->dim_ = new_dim; KALDI_LOG << "Mixed up from dimension of " << old_dim << " to " << new_dim << " in the softmax layer."; } } // namespace nnet2 } // namespace kaldi