// gmmbin/gmm-decode-nbest.cc // Copyright 2009-2011 Microsoft Corporation, Mirko Hannemann // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "fst/fstlib.h" #include "fstext/fstext-lib.h" #include "decoder/nbest-decoder.h" #include "gmm/decodable-am-diag-gmm.h" #include "util/timer.h" #include "lat/kaldi-lattice.h" // for CompactLatticeArc #include "fstext/lattice-utils.h" // for ConvertLattice using namespace kaldi; fst::Fst *ReadNetwork(std::string filename) { // read decoding network FST Input ki(filename); // use ki.Stream() instead of is. if (!ki.Stream().good()) KALDI_ERR << "Could not open decoding-graph FST " << filename; fst::FstHeader hdr; if (!hdr.Read(ki.Stream(), "")) { KALDI_ERR << "Reading FST: error reading FST header."; } if (hdr.ArcType() != fst::StdArc::Type()) { KALDI_ERR << "FST with arc type " << hdr.ArcType() << " not supported.\n"; } fst::FstReadOptions ropts("", &hdr); fst::Fst *decode_fst = NULL; if (hdr.FstType() == "vector") { decode_fst = fst::VectorFst::Read(ki.Stream(), ropts); } else if (hdr.FstType() == "const") { decode_fst = fst::ConstFst::Read(ki.Stream(), ropts); } else { KALDI_ERR << "Reading FST: unsupported FST type: " << hdr.FstType(); } if (decode_fst == NULL) { // fst code will warn. KALDI_ERR << "Error reading FST (after reading header)."; return NULL; } else { return decode_fst; } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; const char *usage = "Decode features using GMM-based model, producing N-best lattice output.\n" "Note: this program was mainly intended to validate the lattice generation\n" "algorithm and is not very useful; in general, processing the\n" "lattices into n-best lists will be more efficient.\n" "Usage:\n" " gmm-decode-nbest [options] model-in fst-in features-rspecifier nbestlattice-wspecifier words-wspecifier [alignments-wspecifier]\n"; ParseOptions po(usage); bool allow_partial = true; BaseFloat acoustic_scale = 0.1; std::string word_syms_filename; NBestDecoderOptions decoder_opts; decoder_opts.Register(&po, true); // true == include obscure settings. po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 6) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_filename = po.GetArg(2), feature_rspecifier = po.GetArg(3), lattice_wspecifier = po.GetArg(4), words_wspecifier = po.GetOptArg(5), alignment_wspecifier = po.GetOptArg(6); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } CompactLatticeWriter compact_lattice_writer; if (!compact_lattice_writer.Open(lattice_wspecifier)) { KALDI_ERR << "Could not open table for writing lattices: " << lattice_wspecifier; } Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // It's important that we initialize decode_fst after feature_reader, as it // can prevent crashes on systems installed without enough virtual memory. // It has to do with what happens on UNIX systems if you call fork() on a // large process: the page-table entries are duplicated, which requires a // lot of virtual memory. fst::Fst *decode_fst = ReadNetwork(fst_in_filename); BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; NBestDecoder decoder(*decode_fst, decoder_opts); Timer timer; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); Matrix features (feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << key; num_fail++; continue; } DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); decoder.Decode(&gmm_decodable); fst::VectorFst decoded; // output FST. bool was_final; int32 nbest; BaseFloat nbest_beam; if (decoder.GetNBestLattice(&decoded, &was_final, &nbest, &nbest_beam)) { if (!was_final) { if (allow_partial) { KALDI_WARN << "Decoder did not reach end-state, " << "outputting partial traceback since --allow-partial=true"; } else { KALDI_WARN << "Decoder did not reach end-state, " << "output partial traceback with --allow-partial=true"; num_fail++; KALDI_WARN << "Did not successfully decode utterance " << key << ", len = " << features.NumRows(); continue; // next utterance } } num_success++; KALDI_LOG << "retrieved:" << nbest << " tokens, effective beam:" << nbest_beam; // std::cout << "n-best paths:\n"; // fst::FstPrinter fstprinter(decoded, NULL, NULL, NULL, false, true); // fstprinter.Print(&std::cout, "standard output"); if (acoustic_scale != 0.0) // We'll write the lattice without acoustic scaling fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &decoded); compact_lattice_writer.Write(key, decoded); fst::VectorFst decoded1; ShortestPath(decoded, &decoded1); fst::VectorFst utterance; ConvertLattice(decoded1, &utterance, true); std::vector alignment; std::vector words; LatticeWeight weight; frame_count += features.NumRows(); GetLinearSymbolSequence(utterance, &alignment, &words, &weight); words_writer.Write(key, words); if (alignment_writer.IsOpen()) alignment_writer.Write(key, alignment); if (word_syms != NULL) { std::cerr << key << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] <<" not in symbol table."; std::cerr << s << ' '; } std::cerr << '\n'; } BaseFloat like = -(weight.Value1() - weight.Value2()); // KALDI_LOG << "final weight:" << weight.Value1() << "," << weight.Value2(); tot_like += like; KALDI_LOG << "Log-like per frame for utterance " << key << " is " << (like / features.NumRows()) << " over " << features.NumRows() << " frames."; } else { num_fail++; KALDI_WARN << "Did not successfully decode utterance " << key << ", len = " << features.NumRows(); } } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken [excluding initialization] "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<<" frames."; if (word_syms) delete word_syms; delete decode_fst; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }