// gmmbin/gmm-align-compiled.cc // Copyright 2009-2013 Microsoft Corporation // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "hmm/hmm-utils.h" #include "fstext/fstext-lib.h" #include "decoder/faster-decoder.h" #include "decoder/training-graph-compiler.h" #include "gmm/decodable-am-diag-gmm.h" #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Align features given [GMM-based] models.\n" "Usage: gmm-align-compiled [options] model-in graphs-rspecifier " "feature-rspecifier alignments-wspecifier [scores-wspecifier]\n" "e.g.: \n" " gmm-align-compiled 1.mdl ark:graphs.fsts scp:train.scp ark:1.ali\n" "or:\n" " compile-train-graphs tree 1.mdl lex.fst ark:train.tra b, ark:- | \\\n" " gmm-align-compiled 1.mdl ark:- scp:train.scp t, ark:1.ali\n"; ParseOptions po(usage); BaseFloat beam = 200.0; BaseFloat retry_beam = 0.0; BaseFloat acoustic_scale = 1.0; BaseFloat transition_scale = 1.0; BaseFloat self_loop_scale = 1.0; po.Register("beam", &beam, "Decoding beam"); po.Register("retry-beam", &retry_beam, "Decoding beam for second try at alignment"); po.Register("transition-scale", &transition_scale, "Transition-probability scale [relative to acoustics]"); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("self-loop-scale", &self_loop_scale, "Scale of self-loop versus non-self-loop log probs [relative to acoustics]"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 5) { po.PrintUsage(); exit(1); } if (retry_beam != 0 && retry_beam <= beam) KALDI_WARN << "Beams do not make sense: beam " << beam << ", retry-beam " << retry_beam; FasterDecoderOptions decode_opts; decode_opts.beam = beam; // Don't set the other options. std::string model_in_filename = po.GetArg(1); std::string fst_rspecifier = po.GetArg(2); std::string feature_rspecifier = po.GetArg(3); std::string alignment_wspecifier = po.GetArg(4); std::string scores_wspecifier = po.GetOptArg(5); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } SequentialTableReader fst_reader(fst_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); BaseFloatWriter scores_writer(scores_wspecifier); int num_success = 0, num_no_feat = 0, num_other_error = 0, num_retry = 0; BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; for (; !fst_reader.Done(); fst_reader.Next()) { std::string key = fst_reader.Key(); if (!feature_reader.HasKey(key)) { num_no_feat++; KALDI_WARN << "No features for utterance " << key; } else { const Matrix &features = feature_reader.Value(key); VectorFst decode_fst(fst_reader.Value()); fst_reader.FreeCurrent(); // this stops copy-on-write of the fst // by deleting the fst inside the reader, since we're about to mutate // the fst by adding transition probs. if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << key; num_other_error++; continue; } if (decode_fst.Start() == fst::kNoStateId) { KALDI_WARN << "Empty decoding graph for " << key; num_other_error++; continue; } { // Add transition-probs to the FST. std::vector disambig_syms; // empty. AddTransitionProbs(trans_model, disambig_syms, transition_scale, self_loop_scale, &decode_fst); } // SimpleDecoder decoder(decode_fst, beam); FasterDecoder decoder(decode_fst, decode_opts); // makes it a bit faster: 37 sec -> 26 sec on 1000 RM utterances @ beam 200. DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); decoder.Decode(&gmm_decodable); VectorFst decoded; // linear FST. bool ans = decoder.ReachedFinal() // consider only final states. && decoder.GetBestPath(&decoded); if (!ans && retry_beam != 0.0) { num_retry++; KALDI_WARN << "Retrying utterance " << key << " with beam " << retry_beam; decode_opts.beam = retry_beam; decoder.SetOptions(decode_opts); decoder.Decode(&gmm_decodable); ans = decoder.ReachedFinal() // consider only final states. && decoder.GetBestPath(&decoded); decode_opts.beam = beam; decoder.SetOptions(decode_opts); } if (ans) { std::vector alignment; std::vector words; LatticeWeight weight; frame_count += features.NumRows(); GetLinearSymbolSequence(decoded, &alignment, &words, &weight); BaseFloat like = -(weight.Value1()+weight.Value2()) / acoustic_scale; tot_like += like; if (scores_writer.IsOpen()) scores_writer.Write(key, -(weight.Value1()+weight.Value2())); alignment_writer.Write(key, alignment); num_success ++; if (num_success % 50 == 0) { KALDI_LOG << "Processed " << num_success << " utterances, " << "log-like per frame for " << key << " is " << (like / features.NumRows()) << " over " << features.NumRows() << " frames."; } } else { KALDI_WARN << "Did not successfully decode file " << key << ", len = " << (features.NumRows()); num_other_error++; } } } KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<< " frames."; KALDI_LOG << "Retried " << num_retry << " out of " << (num_success + num_other_error) << " utterances."; KALDI_LOG << "Done " << num_success << ", could not find features for " << num_no_feat << ", other errors on " << num_other_error; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }