// gmmbin/gmm-adapt-map.cc // Copyright 2012 Cisco Systems (author: Neha Agrawal) // Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include #include #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "gmm/mle-am-diag-gmm.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Compute MAP estimates per-utterance (default) or per-speaker for\n" "the supplied set of speakers (spk2utt option). This will typically\n" "be piped into gmm-latgen-map\n" "\n" "Usage: gmm-adapt-map [options] " " \n"; ParseOptions po(usage); string spk2utt_rspecifier; bool binary = true; MapDiagGmmOptions map_config; std::string update_flags_str = "mw"; po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Register("binary", &binary, "Write output in binary mode"); po.Register("update-flags", &update_flags_str, "Which GMM parameters will be " "updated: subset of mvw."); map_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), posteriors_rspecifier = po.GetArg(3), map_am_wspecifier = po.GetArg(4); GmmFlagsType update_flags = StringToGmmFlags(update_flags_str); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); MapAmDiagGmmWriter map_am_writer(map_am_wspecifier); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input is(model_filename, &binary); trans_model.Read(is.Stream(), binary); am_gmm.Read(is.Stream(), binary); } double tot_like = 0.0, tot_like_change = 0.0, tot_t = 0.0, tot_t_check = 0.0; int32 num_done = 0, num_err = 0; if (spk2utt_rspecifier != "") { // per-speaker adaptation SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { std::string spk = spk2utt_reader.Key(); AmDiagGmm copy_am_gmm; copy_am_gmm.CopyFromAmDiagGmm(am_gmm); AccumAmDiagGmm map_accs; map_accs.Init(am_gmm, update_flags); const std::vector &uttlist = spk2utt_reader.Value(); // for each speaker, estimate MAP means std::vector::const_iterator iter = uttlist.begin(), end = uttlist.end(); for (; iter != end; ++iter) { std::string utt = *iter; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Did not find features for utterance " << utt; continue; } if (!posteriors_reader.HasKey(utt)) { KALDI_WARN << "Did not find posteriors for utterance " << utt; num_err++; continue; } const Matrix &feats = feature_reader.Value(utt); const Posterior &posterior = posteriors_reader.Value(utt); if (posterior.size() != feats.NumRows()) { KALDI_WARN << "Posteriors has wrong size " << (posterior.size()) << " vs. " << (feats.NumRows()); num_err++; continue; } BaseFloat file_like = 0.0, file_t = 0.0; Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for ( size_t i = 0; i < posterior.size(); i++ ) { for ( size_t j = 0; j < pdf_posterior[i].size(); j++ ) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat weight = pdf_posterior[i][j].second; file_like += map_accs.AccumulateForGmm(copy_am_gmm, feats.Row(i), pdf_id, weight); file_t += weight; } } KALDI_VLOG(2) << "Average like for utterance " << utt << " is " << (file_like/file_t) << " over " << file_t << " frames."; tot_like += file_like; tot_t += file_t; num_done++; if (num_done % 10 == 0) KALDI_VLOG(1) << "Avg like per frame so far is " << (tot_like / tot_t); } // end looping over all utterances of the current speaker // MAP estimation. BaseFloat spk_objf_change = 0.0, spk_frames = 0.0; MapAmDiagGmmUpdate(map_config, map_accs, update_flags, ©_am_gmm, &spk_objf_change, &spk_frames); KALDI_LOG << "For speaker " << spk << ", objective function change " << "from MAP was " << (spk_objf_change / spk_frames) << " over " << spk_frames << " frames."; tot_like_change += spk_objf_change; tot_t_check += spk_frames; // Writing AM for each speaker in a table map_am_writer.Write(spk,copy_am_gmm); } // end looping over speakers } else { // per-utterance adaptation SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for ( ; !feature_reader.Done(); feature_reader.Next() ) { std::string utt = feature_reader.Key(); AmDiagGmm copy_am_gmm; copy_am_gmm.CopyFromAmDiagGmm(am_gmm); AccumAmDiagGmm map_accs; map_accs.Init(am_gmm, update_flags); map_accs.SetZero(update_flags); if ( !posteriors_reader.HasKey(utt) ) { KALDI_WARN << "Did not find aligned transcription for utterance " << utt; num_err++; continue; } const Matrix &feats = feature_reader.Value(); const Posterior &posterior = posteriors_reader.Value(utt); if ( posterior.size() != feats.NumRows() ) { KALDI_WARN << "Posteriors has wrong size " << (posterior.size()) << " vs. " << (feats.NumRows()); num_err++; continue; } num_done++; BaseFloat file_like = 0.0, file_t = 0.0; Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for ( size_t i = 0; i < posterior.size(); i++ ) { for ( size_t j = 0; j < pdf_posterior[i].size(); j++ ) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat prob = pdf_posterior[i][j].second; file_like += map_accs.AccumulateForGmm(copy_am_gmm,feats.Row(i), pdf_id, prob); file_t += prob; } } KALDI_VLOG(2) << "Average like for utterance " << utt << " is " << (file_like/file_t) << " over " << file_t << " frames."; tot_like += file_like; tot_t += file_t; if ( num_done % 10 == 0 ) KALDI_VLOG(1) << "Avg like per frame so far is " << (tot_like / tot_t); // MAP BaseFloat utt_objf_change = 0.0, utt_frames = 0.0; MapAmDiagGmmUpdate(map_config, map_accs, update_flags, ©_am_gmm, &utt_objf_change, &utt_frames); KALDI_LOG << "For utterance " << utt << ", objective function change " << "from MAP was " << (utt_objf_change / utt_frames) << " over " << utt_frames << " frames."; tot_like_change += utt_objf_change; tot_t_check += utt_frames; // Writing AM for each utterance in a table map_am_writer.Write(feature_reader.Key(), copy_am_gmm); } } KALDI_ASSERT(ApproxEqual(tot_t, tot_t_check)); KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors"; KALDI_LOG << "Overall acoustic likelihood was " << (tot_like / tot_t) << " and change in likelihod per frame was " << (tot_like_change / tot_t) << " over " << tot_t << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception& e) { std::cerr << e.what(); return -1; } }