// featbin/apply-cmvn-sliding.cc // Copyright 2013 Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "matrix/kaldi-matrix.h" #include "feat/feature-functions.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using kaldi::int32; const char *usage = "Apply sliding-window cepstral mean (and optionally variance)\n" "normalization per utterance. If center == true, window is centered\n" "on frame being normalized; otherwise it precedes it in time.\n" "Useful for speaker-id and for offline training of a system intended\n" "for use with online feature normalization, as in src/online/.\n" "\n" "Usage: apply-cmvn-sliding [options] \n"; ParseOptions po(usage); SlidingWindowCmnOptions opts; opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } int32 num_done = 0, num_err = 0; std::string feat_rspecifier = po.GetArg(1); std::string feat_wspecifier = po.GetArg(2); SequentialBaseFloatMatrixReader feat_reader(feat_rspecifier); BaseFloatMatrixWriter feat_writer(feat_wspecifier); for (;!feat_reader.Done(); feat_reader.Next()) { std::string utt = feat_reader.Key(); Matrix feat(feat_reader.Value()); if (feat.NumRows() == 0) { KALDI_WARN << "Empty feature matrix for utterance " << utt; num_err++; continue; } Matrix cmvn_feat(feat.NumRows(), feat.NumCols(), kUndefined); SlidingWindowCmn(opts, feat, &cmvn_feat); feat_writer.Write(utt, cmvn_feat); num_done++; } KALDI_LOG << "Applied sliding-window cepstral mean " << (opts.normalize_variance ? "and variance " : "") << "normalization to " << num_done << " utterances, " << num_err << " had errors."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }