#!/bin/bash # Copyright 2012-2013 Brno University of Technology (Author: Karel Vesely) # Apache 2.0 # Aligns 'data' to sequences of transition-ids using Neural Network based acoustic model. # Optionally produces alignment in lattice format, this is handy to get word alignment. # Begin configuration section. nj=4 cmd=run.pl stage=0 # Begin configuration. scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" beam=10 retry_beam=40 align_to_lats=false # optionally produce alignment in lattice format lats_decode_opts="--acoustic-scale=0.1 --beam=20 --latbeam=10" lats_graph_scales="--transition-scale=1.0 --self-loop-scale=0.1" use_gpu="no" # yes|no|optionaly # End configuration options. [ $# -gt 0 ] && echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh # source the path. . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "usage: $0 " echo "e.g.: $0 data/train data/lang exp/tri1 exp/tri1_ali" echo "main options (for others, see top of script file)" echo " --config # config containing options" echo " --nj # number of parallel jobs" echo " --cmd (utils/run.pl|utils/queue.pl ) # how to run jobs." exit 1; fi data=$1 lang=$2 srcdir=$3 dir=$4 oov=`cat $lang/oov.int` || exit 1; mkdir -p $dir/log echo $nj > $dir/num_jobs sdata=$data/split$nj [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; cp $srcdir/{tree,final.mdl} $dir || exit 1; # Select default locations to model files nnet=$srcdir/final.nnet; class_frame_counts=$srcdir/ali_train_pdf.counts feature_transform=$srcdir/final.feature_transform model=$dir/final.mdl # Check that files exist for f in $sdata/1/feats.scp $sdata/1/text $lang/L.fst $nnet $model $feature_transform $class_frame_counts; do [ ! -f $f ] && echo "$0: missing file $f" && exit 1; done # PREPARE FEATURE EXTRACTION PIPELINE # Create the feature stream: feats="ark,s,cs:copy-feats scp:$sdata/JOB/feats.scp ark:- |" # Optionally add cmvn if [ -f $srcdir/norm_vars ]; then norm_vars=$(cat $srcdir/norm_vars 2>/dev/null) [ ! -f $sdata/1/cmvn.scp ] && echo "$0: cannot find cmvn stats $sdata/1/cmvn.scp" && exit 1 feats="$feats apply-cmvn --norm-vars=$norm_vars --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp ark:- ark:- |" fi # Optionally add deltas if [ -f $srcdir/delta_order ]; then delta_order=$(cat $srcdir/delta_order) feats="$feats add-deltas --delta-order=$delta_order ark:- ark:- |" fi # Finally add feature_transform and the MLP feats="$feats nnet-forward --feature-transform=$feature_transform --no-softmax=true --class-frame-counts=$class_frame_counts --use-gpu=$use_gpu $nnet ark:- ark:- |" echo "$0: aligning data '$data' using nnet/model '$srcdir', putting alignments in '$dir'" # Map oovs in reference transcription tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text|"; # We could just use align-mapped in the next line, but it's less efficient as it compiles the # training graphs one by one. if [ $stage -le 0 ]; then $cmd JOB=1:$nj $dir/log/align.JOB.log \ compile-train-graphs $dir/tree $dir/final.mdl $lang/L.fst "$tra" ark:- \| \ align-compiled-mapped $scale_opts --beam=$beam --retry-beam=$retry_beam $dir/final.mdl ark:- \ "$feats" "ark,t:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi # Optionally align to lattice format (handy to get word alignment) if [ "$align_to_lats" == "true" ]; then echo "$0: aligning also to lattices '$dir/lat.*.gz'" $cmd JOB=1:$nj $dir/log/align_lat.JOB.log \ compile-train-graphs $lat_graph_scale $dir/tree $dir/final.mdl $lang/L.fst "$tra" ark:- \| \ latgen-faster-mapped $lat_decode_opts --word-symbol-table=$lang/words.txt $dir/final.mdl ark:- \ "$feats" "ark:|gzip -c >$dir/lat.JOB.gz" || exit 1; fi echo "$0: done aligning data."