#!/bin/bash # This script demonstrates discriminative training of p-norm neural nets. It's on top # of run_5d_gpu.sh, which uses adapted 40-dimensional features. set -e # exit on error. nj=$(cat exp/tri4b_ali_si284/num_jobs) steps/nnet2/make_denlats.sh --cmd "$decode_cmd -l mem_free=1G,ram_free=1G" \ --nj $nj --sub-split 20 --num-threads 6 --parallel-opts "-pe smp 6" \ --transform-dir exp/tri4b_ali_si284 \ data/train_si284 data/lang exp/nnet5d exp/nnet5d_denlats steps/nnet2/align.sh --cmd "$decode_cmd $gpu_opts" \ --use-gpu yes --transform-dir exp/tri4b_ali_si284 \ --nj $nj data/train_si284 data/lang exp/nnet5d exp/nnet5d_ali # note, the default options use 16 threads. steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" --learning-rate 0.00002 \ --num-jobs-nnet 4 --transform-dir exp/tri4b_ali_si284 \ data/train_si284 data/lang \ exp/nnet5d_ali exp/nnet5d_denlats exp/nnet5d/final.mdl exp/nnet6d_mpe for epoch in 1 2 3 4; do dir=exp/nnet6d_mpe steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 10 --iter epoch$epoch \ --transform-dir exp/tri4b/decode_bd_tgpr_dev93 \ exp/tri4b/graph_bd_tgpr data/test_dev93 $dir/decode_bd_tgpr_dev93_epoch$epoch & steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 8 --iter epoch$epoch \ --transform-dir exp/tri4b/decode_bd_tgpr_eval92 \ exp/tri4b/graph_bd_tgpr data/test_eval92 $dir/decode_bd_tgpr_eval92_epoch$epoch & done exit 0;