#!/bin/bash # This is an ensemble training recipe using pnorm neural nets on top of adapted 40-dimensional features. ensemble_size=4 initial_beta=0.1 final_beta=5 train_stage=-10 temp_dir= # e.g. --temp-dir /export/m1-02/dpovey/kaldi-dan2/egs/wsj/s5/ parallel_opts="-l gpu=1,hostname=g*" # This is suitable for the CLSP network, you'll likely have to change it. dir=exp/nnet5e_gpu # Note: since we multiplied the num-jobs by 1/4, we halved the # learning rate, relative to run_5c.sh . ./cmd.sh . utils/parse_options.sh ( if [ ! -z "$temp_dir" ] && [ ! -e $dir/egs ]; then mkdir -p $dir mkdir -p $temp_dir/$dir/egs ln -s $temp_dir/$dir/egs $dir/ fi steps/nnet2/train_pnorm_ensemble.sh --stage $train_stage \ --num-jobs-nnet 4 --num-threads 1 --parallel-opts "$parallel_opts" \ --mix-up 8000 \ --initial-learning-rate 0.02 --final-learning-rate 0.002 \ --num-hidden-layers 4 \ --pnorm-input-dim 2000 --pnorm-output-dim 400 \ --cmd "$decode_cmd" \ --p 2 \ --ensemble-size $ensemble_size --initial-beta $initial_beta --final-beta $final_beta \ data/train_si284 data/lang exp/tri4b_ali_si284 $dir || exit 1 steps/decode_nnet_cpu.sh --cmd "$decode_cmd" --nj 10 \ --transform-dir exp/tri4b/decode_tgpr_dev93 \ exp/tri4b/graph_tgpr data/test_dev93 $dir/decode_tgpr_dev93 steps/decode_nnet_cpu.sh --cmd "$decode_cmd" --nj 8 \ --transform-dir exp/tri4b/decode_tgpr_eval92 \ exp/tri4b/graph_tgpr data/test_eval92 $dir/decode_tgpr_eval92 steps/decode_nnet_cpu.sh --cmd "$decode_cmd" --nj 10 \ --transform-dir exp/tri4b/decode_bd_tgpr_dev93 \ exp/tri4b/graph_bd_tgpr data/test_dev93 $dir/decode_bd_tgpr_dev93 steps/decode_nnet_cpu.sh --cmd "$decode_cmd" --nj 8 \ --transform-dir exp/tri4b/decode_bd_tgpr_eval92 \ exp/tri4b/graph_bd_tgpr data/test_eval92 $dir/decode_bd_tgpr_eval92 )