#!/bin/bash # This is pnorm neural net training on top of adapted 40-dimensional features. # This version of the script uses GPUs. We distinguish it by putting "_gpu" # at the end of the directory name. # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be # almost the same, but this may be a little bit slow. num_threads=16 parallel_opts="-pe smp $num_threads" . cmd.sh dir=exp/nnet4d ( steps/nnet2/train_pnorm.sh --num-epochs 20 \ --num-jobs-nnet 4 --num-threads $num_threads --parallel-opts "$parallel_opts" \ --num-epochs-extra 10 --add-layers-period 1 \ --num-hidden-layers 2 \ --mix-up 4000 \ --initial-learning-rate 0.02 --final-learning-rate 0.004 \ --cmd "$decode_cmd" \ --pnorm-input-dim 1000 \ --pnorm-output-dim 200 \ --combine-regularizer 1.0e-12 \ data/train data/lang exp/tri3b_ali $dir steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --transform-dir exp/tri3b/decode \ exp/tri3b/graph data/test $dir/decode steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 \ --transform-dir exp/tri3b/decode_ug \ exp/tri3b/graph_ug data/test $dir/decode_ug )