#!/bin/bash # To be run from one directory above this script. text=data/local/train/text lexicon=data/local/dict/lexicon.txt for f in "$text" "$lexicon"; do [ ! -f $x ] && echo "$0: No such file $f" && exit 1; done # This script takes no arguments. It assumes you have already run # swbd_p1_data_prep.sh. # It takes as input the files #data/local/train/text #data/local/dict/lexicon.txt dir=data/local/lm mkdir -p $dir export LC_ALL=C # You'll get errors about things being not sorted, if you # have a different locale. export PATH=$PATH:`pwd`/../../../tools/kaldi_lm ( # First make sure the kaldi_lm toolkit is installed. cd ../../../tools || exit 1; if [ -d kaldi_lm ]; then echo Not installing the kaldi_lm toolkit since it is already there. else echo Downloading and installing the kaldi_lm tools if [ ! -f kaldi_lm.tar.gz ]; then wget http://www.danielpovey.com/files/kaldi/kaldi_lm.tar.gz || exit 1; fi tar -xvzf kaldi_lm.tar.gz || exit 1; cd kaldi_lm make || exit 1; echo Done making the kaldi_lm tools fi ) || exit 1; mkdir -p $dir cleantext=$dir/text.no_oov cat $text | awk -v lex=$lexicon 'BEGIN{while((getline0){ seen[$1]=1; } } {for(n=1; n<=NF;n++) { if (seen[$n]) { printf("%s ", $n); } else {printf(" ");} } printf("\n");}' \ > $cleantext || exit 1; cat $cleantext | awk '{for(n=2;n<=NF;n++) print $n; }' | sort | uniq -c | \ sort -nr > $dir/word.counts || exit 1; # Get counts from acoustic training transcripts, and add one-count # for each word in the lexicon (but not silence, we don't want it # in the LM-- we'll add it optionally later). cat $cleantext | awk '{for(n=2;n<=NF;n++) print $n; }' | \ cat - <(grep -w -v '!SIL' $lexicon | awk '{print $1}') | \ sort | uniq -c | sort -nr > $dir/unigram.counts || exit 1; # note: we probably won't really make use of as there aren't any OOVs cat $dir/unigram.counts | awk '{print $2}' | get_word_map.pl "" "" "" > $dir/word_map \ || exit 1; # note: ignore 1st field of train.txt, it's the utterance-id. cat $cleantext | awk -v wmap=$dir/word_map 'BEGIN{while((getline0)map[$1]=$2;} { for(n=2;n<=NF;n++) { printf map[$n]; if(n$dir/train.gz \ || exit 1; train_lm.sh --arpa --lmtype 3gram-mincount $dir || exit 1; # LM is small enough that we don't need to prune it (only about 0.7M N-grams). # Perplexity over 128254.000000 words is 90.446690 # note: output is # data/local/lm/3gram-mincount/lm_unpruned.gz exit 0 # From here is some commands to do a baseline with SRILM (assuming # you have it installed). heldout_sent=10000 # Don't change this if you want result to be comparable with # kaldi_lm results sdir=$dir/srilm # in case we want to use SRILM to double-check perplexities. mkdir -p $sdir cat $cleantext | awk '{for(n=2;n<=NF;n++){ printf $n; if(n $sdir/heldout cat $cleantext | awk '{for(n=2;n<=NF;n++){ printf $n; if(n $sdir/train cat $dir/word_map | awk '{print $1}' | cat - <(echo ""; echo "" ) > $sdir/wordlist ngram-count -text $sdir/train -order 3 -limit-vocab -vocab $sdir/wordlist -unk \ -map-unk "" -kndiscount -interpolate -lm $sdir/srilm.o3g.kn.gz ngram -lm $sdir/srilm.o3g.kn.gz -ppl $sdir/heldout # 0 zeroprobs, logprob= -250954 ppl= 90.5091 ppl1= 132.482 # Note: perplexity SRILM gives to Kaldi-LM model is same as kaldi-lm reports above. # Difference in WSJ must have been due to different treatment of . ngram -lm $dir/3gram-mincount/lm_unpruned.gz -ppl $sdir/heldout # 0 zeroprobs, logprob= -250913 ppl= 90.4439 ppl1= 132.379